Причины возникновения и использование резонанса напряжений. Колебательный контур LC Резонанс напряжения в каких цепях

Описание явления

Пусть имеется колебательный контур с частотой собственных колебаний f , и пусть внутри него работает генератор переменного тока такой же частоты f .

В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.

Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.)

Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.

Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.

В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.

Замечания

Колебательный контур, работающий в режиме резонанса напряжений, не является усилителем мощности. Повышенные напряжения, возникающие на его элементах, возникают за счет заряда конденсатора в первую четверть периода после включения и исчезают при отборе от контура большой мощности.

Явление резонанса напряжений необходимо учитывать при разработке аппаратуры. Повышенное напряжение может повредить не рассчитаные на него элементы.

Применение

При совпадении частоты генератора и собственных колебаний контура на катушке появляется напряжение, более высокое, чем на клеммах генератора. Это можно использовать в удвоителях напряжений, работающих на высокоомную нагрузку, или полосовых фильтрах, реагирующих на определенную частоту.

См. также

Литература

  • Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 52.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Резонанс напряжений" в других словарях:

    резонанс напряжений - резонанс напряжений; отрасл. последовательный резонанс Явление резонанса в электрической цепи, содержащей последовательно соединенные участки, имеющие индуктивные и емкостный характер … Политехнический терминологический толковый словарь

    резонанс напряжений - Резонанс в участке электрической цепи, содержащей последовательно соединенные индуктивный и емкостный элементы. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия EN series resonancevoltage resonance …

    резонанс напряжений - įtampų rezonansas statusas T sritis automatika atitikmenys: angl. acceptor resonance; series resonance; voltage resonance vok. Reihenresonanz, f; Serienresonanz, f; Spannungsresonanz, f rus. последовательный резонанс, m; резонанс напряжений, m… … Automatikos terminų žodynas

    резонанс напряжений - 255 резонанс напряжений Резонанс в участке электрической цепи, содержащей последовательно соединенные индуктивный и емкостный элементы Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации

    резонанс напряжений - įtampų rezonansas statusas T sritis fizika atitikmenys: angl. voltage resonance vok. Spannungsresonanz, f rus. резонанс напряжений, m pranc. résonance de tension, f … Fizikos terminų žodynas

    Последовательный резонанс, резонанс в электрич. цепи из соединённых последовательно катушки индуктивности и конденсатора. На резонансной частоте сопротивление реактивное такой цепи равно нулю, и ток в ней по фазе совпадает с приложенным… … Большой энциклопедический политехнический словарь

    Резонанс напряжений - 1. Резонанс в участке электрической цепи, содержащей последовательно соединенные индуктивный и емкостный элементы Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

    контур, настроенный в резонанс напряжений - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN series oscillatory circuit … Справочник технического переводчика

    Резонанс токов резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура. Содержание 1 Описание явления 2 Замечания … Википедия

    Резонанс - 9 Резонанс По ГОСТ 24346 80

Резонанс в электрической цепи возникает при резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определенной резонансной частотой системы. Это происходит тогда, когда два элемента противоположного характера компенсируют эффект друг друга в цепи.

RLC-цепь

Схема RLC – это электрическая цепь с последовательно или параллельно соединенными элементами:

  • резистора,
  • индуктора,
  • конденсатора.

Название RLC связано с тем, что эти буквы являются обычными символами электрических элементов: сопротивления, индуктивности и емкости.

Векторная диаграмма последовательной RLC-цепи представлена в одном из трех вариантов:

  • индуктивном,
  • емкостном,
  • активном.

В последнем варианте при нулевом сдвиге фаз, равенстве индуктивного и емкостного сопротивлений возникает резонанс напряжений.

Электрический резонанс

В природе бывают резонанс токов и резонанс напряжений. Наблюдаются они в цепи с параллельным и последовательным соединением элементов R, L и С. Резонансная частота одинакова для обеих цепей, она находится из условия противоположности сопротивлений реактивных элементов и вычисляется по нижеследующей формуле.

Векторные диаграммы практически идентичны, только сигналы отличаются. В последовательном контуре резонируют напряжения, в параллельном – ток. Но если отступиться от резонансной частоты такая симметрия естественно нарушится. В первом случае сопротивление возрастет, во втором – уменьшится.

Резонанс напряжений, достигающих максимальной амплитуды

На картинке ниже представлена векторная диаграмма цепи последовательного контура, где:

  • I – вектор общего тока;
  • Ul – опережает I на 900;
  • UС – отстает от I на 900;
  • UR – синфазно I.

Из трех векторов напряжения (Ul, UС, UR) два первых взаимно компенсируют друг друга. Они между собой:

  • противоположны по направлению,
  • равны по амплитуде,
  • отличаются по фазе на пи.

Получается, что напряжение по второму закону Кирхгофа приложено только к резистору. В этот момент:

  • импеданс последовательного контура на резонансной частоте минимален и равен просто R;
  • так как сопротивление цепи минимальное, то соответственно ток по амплитуде максимальный;
  • также приблизительно максимальны напряжения на индуктивности и на емкости.

Если рассматривать отдельно последовательный контур LC, то он даёт нулевое сопротивление на резонансной частоте:

Важно! Когда установился гармонический режим c резонансной частотой, в контуре происходит следующее: источник обеспечивает установившуюся амплитуду колебаний; мощность источника расходуется лишь на нагрев резистора.

Резонанс токов через реактивные элементы

Диаграмма параллельного контура на той же частоте. Поскольку все элементы соединены параллельно, то диаграмму лучше начать строить с общего напряжения.

  • U – вектор общего тока;
  • Ic – опережает U на 900;
  • IU – отстает от U на 900;
  • Ток в резисторе (IR) синфазен общему напряжению.

Поскольку сопротивления реактивности по модулю равны, то и амплитуды токов Ic и Iu :

  • одинаковы;
  • достигают максимальной амплитуды.

Получается, что по первому закону Кирхгофа IR равен току источника. Другими словами, ток источника течет только через резистор.

Если рассматривать отдельно параллельный контур LC, то на резонансной частоте его сопротивление бесконечно большое:

Когда установится гармонический режим c резонансной частотой, в контуре происходит следующее:

  • источник обеспечивает установившуюся амплитуду колебаний;
  • мощность источника тока расходуется лишь на пополнение потерь в активном сопротивлении.

Двойственность RLC-контуров

Таким образом, можно сделать сравнительный вывод:

  1. У последовательной RLC цепи импеданс минимален на резонансной частоте и равен активному сопротивлению контура;
  2. У параллельной RLC цепи импеданс максимален на резонансной частоте и равен так называемому сопротивлению утечки, фактически тоже активному сопротивлению контура.

Для того чтобы предуготовить условия для резонанса тока или напряжения, требуется проверить электрическую цепь с целью предопределения ее комплексного сопротивления или проводимости. Помимо этого, её мнимую часть необходимо приравнять к нулю.

Для информации. Напряжения в последовательной цепи ведут себя очень похоже токам параллельной цепи на резонансной частоте, в этом проявляется двойственность RLC-контуров.

Применение резонансного явления

Хорошим примером применения резонансного явления может служить электрический резонансный трансформатор, разработанный изобретателем Николой Тесла ещё в 1891 году. Тесла проводил эксперименты с различными конфигурациями, состоящими в сочетании из двух, а иногда трех резонансных электрических цепей.

Для информации. Термин «катушки Теслы» применяются к ряду высоковольтных резонансных трансформаторов. Устройства используются для получения высокого напряжения, низкого тока, высокой частоты переменного тока.

В то время как обычный трансформатор предназначен для эффективной передачи энергии с первичной на вторичную обмотку, резонансный трансформатор предназначен для временного хранения электрической энергии. Устройство управляет воздушным сердечником резонансно настроенного трансформатора для получения высоких напряжений при малых токах. Каждая обмотка имеет емкость и функционирует как резонансный контур.

Чтобы произвести наибольшее выходное напряжение, первичный и вторичный контуры настроены в резонанс друг с другом. Оригинальные схемы изобретателя применяются как простые разрядники для возбуждения колебаний с помощью настроенных трансформаторов. В более сложных конструкциях используют транзисторные или тиристорные выключатели.

Для информации. Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Своеобразный дизайн катушки продиктован необходимостью достигнуть низкого уровня резистивных потерь энергии (высокая добротность) на высоких частотах, что приводит к увеличению вторичных напряжений.

Электрический резонанс – одно из самых распространенных в мире физических явлений, без которого не было бы TV, диагностических мед. аппаратов. Одни из самых полезных видов резонанса в электрической цепи – это резонанс токов и резонанс напряжений.

Видео

При подключении колебательного контура, состоящего из катушки индуктивности и конденсатора, к источнику энергии (источнику синусоидальной ЭДС или синусоидального тока) могут возникнуть резонансные явления. Возможны два основных типа резонанса: при последовательном соединении катушки и конденсатора — резонанс напряжений, при их параллельном соединении — резонанс токов.

Резонанс напряжений.

Резонанс напряжений возможен в неразветвленном участке цепи, схема замещения которого содержит индуктивный L , емкостный С , и резистивный R элементы, т.е. в последовательном колебательном контуре (рис. 2.43).

Это название отражает равенство действующих значений напряжений на емкостном и индуктивном элементах при противоположных фазах, что видно из векторной диаграммы на рис. 2.44, на которой начальная фаза тока выбрана равной нулю.

Из соотношения (2.766) и условия (2.77) следует, что угловая частота, при которой наблюдается резонанс напряжений, определяется равенством

и называется резонансной .

При резонансе напряжений ток в цепи достигает наибольшего значения I рез = U/R , а напряжения на емкостном и индуктивном элементах

U L р e з = U Ср e з = ω рез LI рез = Uω pe з L/R

могут (и во много раз) превысить напряжение питания, если

ω pe з L = 1/ω pe з С = √L/C > R.

Величина ρ = ω pe з L = 1/ω pe з С = √L/C имеет размерность сопротивления и называется характеристическим сопротивлением колебательного контура. Отношение напряжения на индуктивном или емкостном элементе при резонансе к напряжению U на выводах контура, равное отношению характеристического сопротивления к сопротивлению резистивного элемента, определяет резонансные свойства колебательного контура и называется добротностью контура :

Если при резонансе увеличить в одинаковое число раз п индуктивное и емкостное сопротивления, т. е. выбрать

Х’ L = nX Lpe з и Х" C = пХ Срез,

то ток в цепи не изменится, а напряжения на индуктивном и емкостном элементах увеличатся в n раз (рис. 2.44, б): U L = nU Lpe з и U" C = пU C рез Следовательно, в принципе можно безгранично увеличивать напряжения на индуктивном и емкостном элементах при том же токе: I = I рез = U/R .


Физическая причина возникновения повышенных напряжений — это колебания значительной энергии, запасаемой попеременно в электрическом поле емкостного и в магнитном поле индуктивного элементов.

При резонансе напряжений малые количества энергии, поступающей от источника и компенсирующей потери энергии в активном сопротивлении, достаточны для поддержания незатухающих колебаний в системе относительно больших количеств энергии магнитного и электрического полей.

В аппаратуре связи, автоматики и т. д. большое практическое значение имеют зависимости токов и напряжений от частоты для цепей, в которых возможен резонанс. Эти зависимости называются резонансными кривыми .

Выражение (2.76в) показывает, что ток в цепи зависит от угловой частоты I(ω) и достигает наибольшего значения при резонансе, т.е. при ω = ω pe з и ω pe з L = 1/(ω pe з С) (рис. 2.45).

Полное сопротивление идеального последовательного контура (R = 0) при резонансе равно нулю (короткое замыкание для источника питания).

Наибольшие значения напряжений на индуктивном и емкостном элементах получаются при угловых частотах, несколько отличающихся от резонансной. Так, напряжение на емкостном элементе

Чем больше добротность колебательного контура Q , тем меньше отличаются угловые частоты ω C и ω L от резонансной угловой частоты и тем острее все три резонансные кривые I(ω) , U C (ω) и U L (ω).

В электроэнергетических устройствах в большинстве случаев резонанс напряжений — явление нежелательное, так как при резонансе напряжения установок могут в несколько раз превышать их рабочие напряжения. Но, например, в радиотехнике, телефонии, автоматике резонанс напряжений часто применяется для настройки цепей на заданную частоту.

Коэффициент мощности cosφ при резонансе напряжений равен единице.

2. Условие, признак и применение резонанса напряжений. В каком случае резонанс напряжений вреден? Почему?

Режим, при котором в цепи с последовательным соединением индуктивного и емкостного элемента напряжение на входе совпадает по фазе с током, резонанс напряжения.

внезапное возникновение резонансного режима в цепях большой мощности может вызывать аварийные ситуацию, привести к пробою изоляции проводов и кабелей и создать опасность для персонала.

3. Какими способами можно достичь резонанса напряжений?

При подключении колебательного контура, состоящего из катушки индуктивности и конденсатора, к источнику энергии могут возникнуть резонансное явление. Возможны два основных типа резонанса: при последовательном соединение катушки и конденсатора- резонанс напряжений, при их параллельном соединении- резонансов токов.

4. Почему при резонансе напряжений U 2 >U 1 ?

Где R – активное сопротивление

I – сила тока

XL – индуктивное сопротивление катушки

XC – емкостное сопротивление конденсатора

Z – полное сопротивление переменного тока

При резонансе: UL = UС,

Где UС – напряжение катушки,

UL – напряжение конденсатора

Напряжение можно найти:

U=UR+UL+UC =>U=UR,

Где UR – напряжение катушки, к которой подключен вольтметр V2, значит напряжение V2=V1

5. Какова особенность резонанса напряжений? Объяснить ее.

Следовательно, режим резонанса может быть достигнут изменением индуктивности катушки L, емкости конденсата С или частоты входного напряжения ω.

6. Записать выражение закона Ома через проводимости для цепи с параллельным соединением конденсатора и индуктивной катушки. Чему равна полная проводимость?

Закон Ома через проводимости для цепи переменного тока с параллельным соединение ветвей.

7. Условие, признак и применение резонанса токов.

т.е равенство индуктивной и емкостной проводимостей.

8 . Какими способами можно достичь резонанса токов?

Режим, при котором в цепи, содержащей параллельное ветви с индуктивным и емкостным элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением, резонансом токов.

9. Почему при резонансе токов I 2 > I 1 ?

Потому что, исходя из векторной диаграммы токов при резонансе график будет представлять собой прямоугольный треугольник, где токи I и I 1 будут являться катетами, а ток I 2 – гипотенузой. Следовательно, и I 2 будет больше чем I 1 .

10. Какова особенность резонанса токов? Объяснить ее.

При резонансе токов токи в ветвях значительно больше тока неразветвленной части цепи. Это свойство-усилие тока- является важнейшей особенностью резонанса токов.

11. Объяснить построение векторных диаграмм.

Целью ее построения является определение активной и реактивной составляющих напряжения на катушке и угла сдвига фаз между напряжением на входе цепи и током

Расчеты

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

    Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. - B 3-х кн.: кн.1 /В. Г. Герасимов и др.; Под ред. В. Г. Герасимова. М.: Энергоатомиздат, 1996. – 288 с.

    Касаткин А. С., Немцов М. В. Электротехника. М.: Высш. шк., 1999. – 542 с.

    Электротехника /Под ред. Ю. Л. Хотунцева. М.: АГАР, 1998. – 332с.

    Борисов Ю. М., Липатов Д. Н., Зорин Ю. Н. Электротехника. Энергоатомиздат, 1985. – 550 с.

    ГОСТ 19880-74. Электротехника. Основные понятия. Термины и определения. М.: Издательство стандартов, 1974.

Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.

В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Однако полная аналогия - равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) - возможна не во всех случаях.

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление. Такое состояние цепи имеет место при определенном соотношении ее параметров r, L, С , когда резонансная частота цепи равна частоте приложенного к ней напряжения.

Резонанс вэлектрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.

При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных ее участках. В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,- резонанс токов.

Рассмотрим явление резонанса напряжений на примере цепи рис. 2.11, а .

Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т. е. угол φ = 0. и полное сопротивление цепи равно ее активному сопротивлению.

z = r 2 + (x L - x С ) 2 = r.

Это равенство, очевидно, будет иметь место, если x L = х С, т. е. реактивное сопротивление цепи равно нулю:

x = x L - x С = 0.

Выразив x L и x С соответственно через L , С и f , получим

Рис. 2.14. Векторная диаграмма (а ) и графики мгновенных значений и, i, р (б ) цепи рис. 2.11, а при резонансе напряжений

вытекает, что ток в цепи при резонансе равен напряжению, деленному на активное сопротивление:



I = U/r.

Ток в цепи может оказаться значительно больше тока, который был бы при отсутствии резонанса. При резонансе напряжение на индуктивности равно напряжению на емкости:

Ix L = Ix С = U L = U C .

При больших значениях x L и х C относительно r эти напряжения могут во много раз превышать напряжение сети. Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений.

Напряжение на активном сопротивлении при резонансе равно напряжению, приложенному к цепи:

U r = Ir = U.

На рис. 2.14, а изображена векторная диаграмма цепи рис. 2.11, а при резонансе напряжений Диаграмма подтверждает тот факт, что ток совпадает по фазе с напряжением сети и что напряжение на активном сопротивлении равно напряжению сети. Реактивная мощность при резонансе равна нулю:

Q = Q L - Q C = U L I - U C I = 0.

так как U L = U C .

Полная мощность равна активной мощности;

S = P 2 + Q 2 = P,

так как реактивная мощность равна нулю. Коэффициент мощности равен единице:

cos φ = P/S = r /z = 1.

Поскольку резонанс напряжений возникает, когда индуктивное сопротивление последовательной цепи равно емкостному, а их значения определяются соответственно индуктивностью, емкостью цепи и частотой сети,

x L = fL, x С = .

Резонанс может быть получен или путем подбора параметров цепи при заданной частоте сети, или путем подбора частоты сети при заданных параметрах цепи.

На рис. 2.14, б изображены графики мгновенных значений тока i , напряжения и сети и напряжений и L , и C , и r на отдельных участках, а также активной р = iu r и реактивной p L = iи L ,
p С = iи С
мощностей за период для цепи рис. 2.11. а при резонансе напряжений. С помощью этих графиков можно проследить энергетическне процессы, происходящие в цепи при резонансе напряжений.

Активная мощность р все время положительна, она поступает из сети к активному сопротивлению и выделяется в нем в виде тепла. Мощности p L и р С знакопеременные, и, как видно из графика, их средние значения равны нулю.

В момент времени t = 0 (точка I на рис. 2.14, б ) ток в цепи i = 0 и энергия магнитного поля
W L =
0. Напряжение на емкости равно амплитудному значению U тС, конденсатор заряжен и энергия его электрического поля

W C = U 2 тc С .

В первую четверть периода, в интервале времени между точками 1 и 2, напряжение на емкости и, следовательно, энергия электрического поля убывают. Ток в цепи и энергия магнитного поля возрастают.

В конце первой четверти периода (точка 2 ) и С = 0, W С = 0. i = I m , W L = I 2 m L/ 2.

Таким образом, в первую четверть периода энергия электрического поля переходит в энергию магнитного поля.

Так как площади p С (t ) и p L (t ) , выражающие запас энергии соответственно в электрическом и магнитном полях, одинаковы, вся энергия электрического поля конденсатора переходит в энергию магнитного поля индуктивности. Во вторую четверть периода, в интервале между точками 2 и 3 , энергия магнитного поля переходит в энергию электрического поля.

Рис. 2.15. Графики зависимости I, r, х C , х L , U r , U L , U C от частоты цепи, изображенной на рис 2.11, а

Аналогичные процессы происходят и в последующие четверти периода.

Таким образом, при резонансе реактивная энергия циркулирует внутри контура от индуктивности к емкости и обратно. Обмена реактивной энергией между источниками и цепью не происходит. Ток в проводниках, соединяющих источник с цепью, обусловлен только активной мощностью.

Для анализа цепей иногда используют частотный метод, позволяющий выяснить зависимость параметров цепи и других величин oт частоты.

На рис 2.15 изображены графики зависимости U r , U C , U L , I, х C , х L , от частоты при неизменном напряжении сети.

При f = 0 сопротивления x L = fL = 0,
х C = 1/ fC = ∞, ток I = 0, напряжения U r = I r = 0,
U L = Ix L =
0, U C = U.
При f = f pез х L = х C , I = U/r, U L = U C , U r = U. При f → ∞ x L →∞, х C → 0, U r → 0, U C → 0, U L U .

В интервале частот от f = 0 до f = f pез нагрузка имеет активно-емкостный характер, ток опережает по фазе напряжение сети. В интервале частот f = f pез до f → ∞ нагрузка носит активно-индуктивный характер, ток отстает по фазе от напряжения сети.

Наибольшее значение напряжения на емкости получается при частоте, несколько меньшей резонансной, на индуктивности - при частоте, несколько большей резонансной.

Явления резонанса широко используются в радиоэлектронных устройствах и в заводских промышленных установках.

Пример 2.4. Определить частоту сети, при которой в цепи рис. 2.11, а возникает резонанс напряжений. Определить также, во сколько раз напряжение на индуктивности больше напряжения сети при резонансе, если цепь имеет следующие параметры:

r = 20 Ом, L = 0,1 Гн, С = 5 мкф.

Решение. Резонансная частота

Напряжение на индуктивности при резонансе в 7 раз больше напряжения сети.

Резонанс в электрической цепи.
Резонанс в электрической цепи - явление резкого возраста­ния амплитуды вынужденных колебаний тока при приближении частоты внешнего напряжения (эдс) и собственной частоты колебательного кон­тура.
Из выражения для полного сопротивления переменному току видим, что сопротивление будет минимальным (сила тока при заданном напряжении – максимальной) при условии или .
Следовательно, - т.е. частота изменения внешнего напряжения равна собственной частоте колебаний в контуре.
Амплитуды колебаний напряжения на индуктивности и емкости будут равны и - т.е. они равны по величине и противоположны по фазе (напряжение на индуктивности опережает по фазе напряжение на емкости на p).
Следовательно, .
Полное падение напряжения в контуре равно падению напряжения на активном сопротивлении. Амплитуда установившихся колебаний тока будет опреде­ляться уравнением . В этом и состоит смысл явления резонанса.
При этом если величина , то напряжения на емкостной и индуктивной нагрузках могут оказаться много больше внешнего напряжения (эдс генератора)!
На рисунке представлена зависимость тока в колеба­тельном контуре от частоты при значениях R, гдеR 1
В параллельном контуре при малых активных сопротивлениях R 1 и R 2 токи в параллельных ветвях противоположны по фазе. Тогда, согласно правилу Кирхгофа .
В случае резонанса . Резкое уменьшение амплитуды силы тока во внешней цепи, питающей параллельно соединенные емкостное и индуктивное сопротивления при приближении частоты внешнего напряжения к собственной частоте колебательного контура наз. резонансом токов.
Применение: одно из основных применений резонанса в электрической цепи – настройка радио и телевизионных приемников на частоту передающей станции. Необходимо учитывать резонансные явления, когда в цепи, не рассчитанной на работу в условиях резонанса, возникают чрезмерно большие токи или напряжения (расплавление проводов, пробой изоляции и т.д.).

44.45.Вихревое электрическое поле. Первое уравнение Максвелла. Применение и наблюдение вихревых полей.

Как мы знаем из закона электромагнитной индукции Фарадея, в замкнутом контуре индуцируется ЭДС при изменении магнитного потока, пронизывающего этот контур

Если контур (проводник) движется, то причиной возникновения ЭДС может быть сила Лоренца. Если же контур неподвижен, то и в этом случае, как показывает опыт, в нём возникает ЭДС, определяемая уравнением (3.93). Какова же в этом случае причина возникновения ЭДС? Под действием ЭДС в контуре возникает электрический ток. Это значит, что на электроны проводника действует электрическое поле. Если контур жёсткий, то можно записать

. (3.94)

(Мы поставили знак частной производной, поскольку магнитная индукция может зависеть и от координаты и от времени.) Из 14.2 следует, что циркуляция этого поля по замкнутому контуру не равна нулю, в отличие от электростатического поля. Максвелл предположил, что изменяющееся во времени магнитное поле порождаетвихревое электрическое поле, независимо от того, имеется у нас проводящий контур или нет. Просто если он есть, то позволяет зарегистрировать вихревое электрическое поле Е В .

Левую часть уравнения (3.94) можно преобразовать по формуле Стокса . Тогда, вместо уравнения (3.94), получим

. (3.95)

Поскольку интегрирование может производиться по любой поверхности, опирающейся на контур L , то в каждой точке этой поверхности должны равняться подынтегральные выражения

. (3.96)

Поле Е В существенно отличается от электростатического поля, для которого, как мы помним, циркуляция по замкнутому контуру равна нулю: , а значит, в соответствии с теоремой Стокса, и ротор этого поля в любой точке равен нулю:

В общем случае

но для ротора суммарного поля, в силу уравнения (3.97), остаётся справедливым соотношение (3.96). Таким образом,

. (3.99)

Поскольку переменное магнитное поле порождает электрическое, как это следует из закона индукции Фарадея и полученной нами из этого закона формулы (3.99), то должно существовать и обратное явление – переменное электрическое поле должно порождать магнитное поле. Для установления количественных соотношений рассмотрим процесс заряда конденсатора.

Рисунок 3.21

Для начала определим поле вблизи поверхности металлической обкладки конденсатора. Применим терему Гаусса для вектора электрического смещения к одной из обкладок (рис. 3.21). Внутри металла поле равно нулю, а снаружи направлено перпендикулярно поверхности. Следовательно, поток через весь цилиндр сведётся к потоку через верхнее основание цилиндра площадью dS. И этот поток должен равняться заряду, заключённому внутри нашего цилиндра, или DdS=sdS , или

D=s . (3.100)

Здесь s – поверхностная плотность зарядов на обкладке конденсатора.

Как мы уже говорили, Максвелл предположил, что изменяющееся электрическое поле создаёт магнитное поле. Но мы знаем, что постоянное магнитное поле создаётся токами. Поэтому естественно предположение, что должен быть ещё один ток, который Максвелл назвал током смещения и который ответственен за создание магнитного поля. Для установления вида этого тока смещения, рассмотрим соотношение (3.100) справа налево, а именно

s =D. (3.101)

Умножим обе части на площадь пластины S и получим

q =sS= DS. (3.102)

Здесь q – заряд пластины конденсатора. Во время заряда конденсатора ток в подводящем проводе

. (3.103)

Разделив обе части последнего уравнения на площадь пластины S, получим слева ток проводимости j=I/S , а справа – плотность нового, максвелловского тока, или плотность тока смещения. Таким образом,

В последнем уравнении мы поставили значки векторов – для общего случая и написали частную производную, поскольку в общем случае вектор электрического смещения может зависеть и от координаты.

Проанализировав полученные результаты, Максвелл ввёл понятие общего тока как суммы токов проводимости и тока смещения. Здесь подчеркнём, что ток смещения – это просто название изменяющегося во времени электрического поля. Единственная функция тока смещения – создавать магнитное поле. Тогда обобщенный закон полного тока будет иметь вид

, (3.105)

или окончательно

. (3.106)

Максвелл создал замкнутую макроскопическую теорию электромагнитного поля. В основе этой теории лежат его знаменитые уравнения. Первая пара связывает основные характеристики электрического и магнитного полей

; (3.107)

В уравнении (3.107) под полем E надо понимать полное поле – поле, созданное неподвижными зарядами, и поле, созданное изменяющимся магнитным полем. Уравнение (3.108) отражает тот факт, что в природе нет магнитных зарядов.

Вторая пара уравнений Максвелла связывает вспомогательные характеристики электрического и магнитного полей

; (3.109)

Уравнение (3.109) является следствием того, что магнитное поле создаётся как токами проводимости, так и токами смещения (изменяющимся во времени электрическим полем). И уравнение (3.110) говорит нам, что источниками электрического поля (помимо изменяющегося магнитного поля) являются электрические заряды. Уравнения Максвелла (3.107)…(3.110) называются уравнениями Максвелла в интегральной форме.

Уравнения Максвелла дополняются так называемыми материальными уравнениями, которые устанавливают связь между вспомогательными и основными характеристиками полей. Для однородной и изотропной неферромагнитной среды эти уравнения имеют вид

Уравнения Максвелла не симметричны относительно электрического и магнитного полей, поскольку в природе нет магнитных зарядов.

Уравнения Максвелла позволили предсказать существование электромагнитных волн – распространяющихся в пространстве со скоростью света переменных электрического и магнитного полей. Вскоре электромагнитные волны были обнаружены немецким физиком Г.Герцем. Оказалось, что их свойства полностью описываются уравнениями Максвелла. Это также позволило Максвеллу создать электромагнитную теорию света – как электромагнитных волн с длиной волны .

Если применить к уравнениям (3.107)…(3.110) теоремы Гаусса и Стокса, то получим уравнения Максвелла в дифференциальной форме:

; (3.112)

; (3.114)

Уравнения (3.98)…(3.101) связывают локальные характеристики поля в каждой точке.

46.Система уравнений Максвелла.



error: Контент защищен !!